N19 - VSEPR and the 3D Geometry of Molecules

Target:

I can identify the 3-dimensional shape of molecules.

Link to YouTube Presentation: https://youtu.be/zvTSm6kT7C0

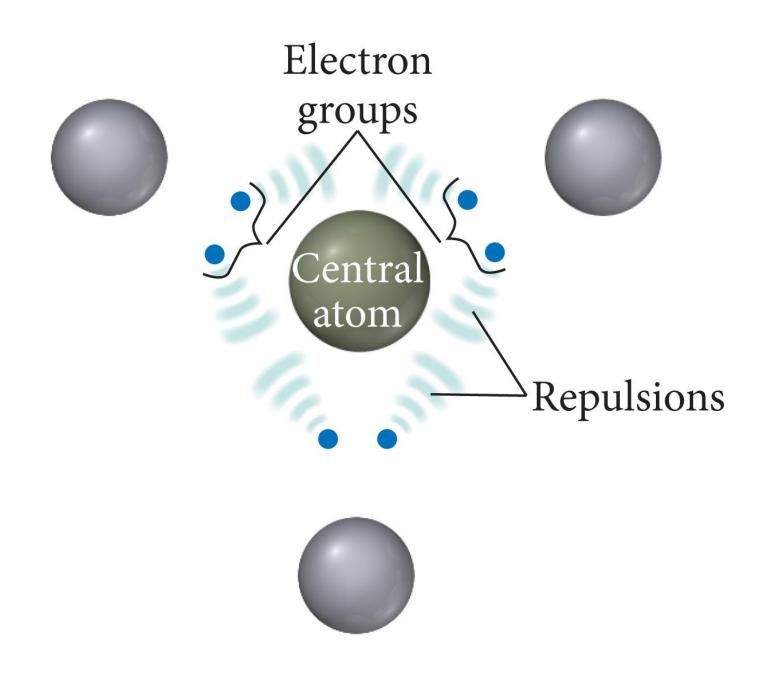
Make a big obvious note to yourself in your notebook...

LOOK AT VSEPR CHART IN REFERENCE SHEET
SECTION OF BINDER!!!!!

VSEPR

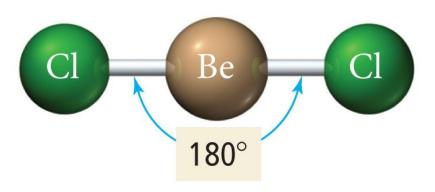
Valence Shell Electron Pair Repulsion

Steric #	х	E	"generic" Looking at shape of everything attached	"specific" Only looking at shape of atoms		
Electron Pairs	Bonded Pairs	Lone Pairs	Electron Geometry (hybridization)	Molecular Geometry (AXE Formula)	Bond Angles	3-D example
2	1	1-3	Linear (sp)	Linear (AXE, AXE ₂ , AXE ₃)	180	640
2	2	0		Linear (AX ₂)		
3	3	0	Trigonal Planar (sp²)	Trigonal Planar (AX ₃)	120	4
,	2	1		Bent (AX₂E)	< 120	~
	4	0		Tetrahedral (AX ₄)	109.5	
4	3 1	Tetrahedral (sp³)	Trigonal Pyramidal (AX₃E)	< 109.5		
	2	2		Bent (AX ₂ E ₂)	<< 109.5	~

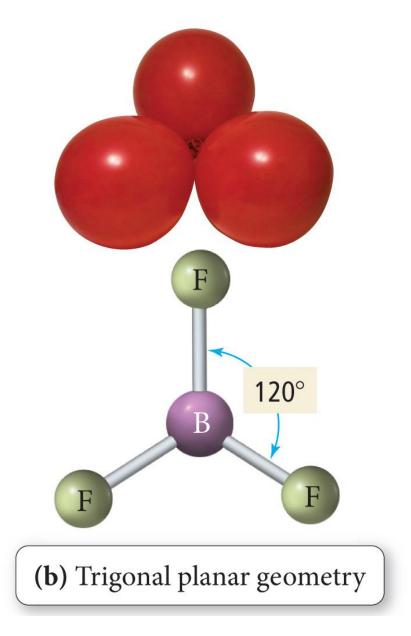

Sterio #	х	E	"generic" Looking at shape of everything attached	"specific" Only looking at shape of atoms	"it is unclear if d orbitals hybridize – currently we think they do not.	
Electron Pairs	Bonded Pairs	Lone Pairs	Electron Geometry (hybridization)	Molecular Geometry (AXE Formula)	Bond Angles	3-D example
	5	0	Trigonal Bipyramidal (sp ³ d*)	Trigonal Bipyramidal (AX ₆)	90 Axial (above & below) 120 Equatorial (in plane)	
5	4	1		Seesaw (AX ₄ E)	90 120 180	-
	3	2		T-Shaped (AX ₃ E ₂)	90 180	***
	2	3		Linear (AX ₂ E ₃)	180	
	6	0	Octahedral (sp³d³*)	Octahedral (AX ₆)	90	A.
	5	1		Square Pyramidal (AX ₆ E)	90 180	3
6	4	2		Square Planar (AX ₄ E ₂)	90 180	
	3	3		T-Shaped (AX:E1)	90 180	-
	2	4		Linear (AX ₂ E ₄)	180	

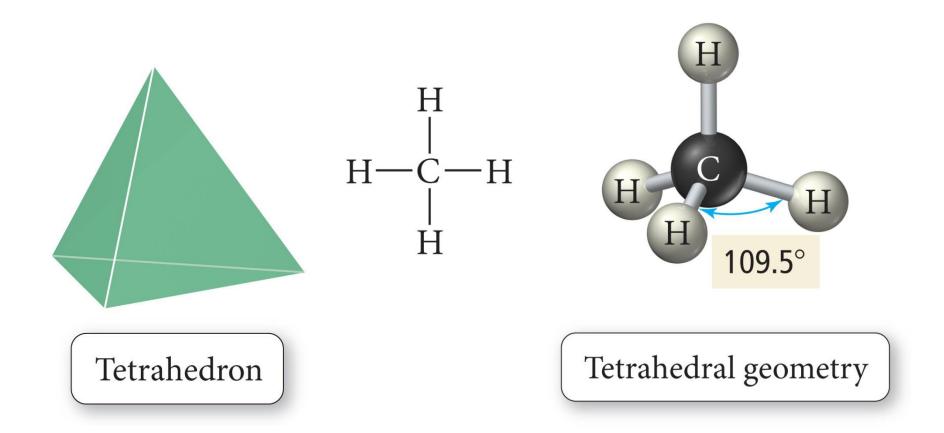
		VS	EPR Geometries	9 Y	
Steric No.	Basic Geometry 0 lone pair	1 lone pair	2 Ione pairs	3 Ione pairs	4 Ione pairs
2	X E X				
3	X 120° X Trigonal Planar	E X < 120° Bent or Angular			
4	XIIIIIII E 109° X	XIIIIE X < 109° Trigonal Pyramid	X X X X S 109° Bent or Angular		
5	X X 120° X X X X Trigonal Bipyramid	< 90° X X X 120° E X Sawhorse or Seesaw	X Mun. E X X T-shape	X 180° X Linear	
6	X _{IIII} , X 90° X 90° X X X Octahedral	Square Pyramid	90° X E MIN X X X	X X X X < 90° T-shape	X 180° Illum, E mult

VSEPR Model

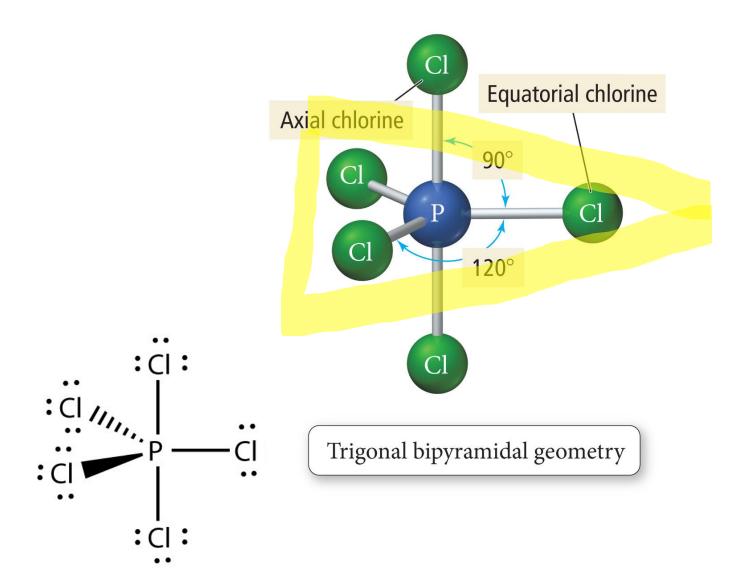

(Valence Shell Electron Pair Repulsion)

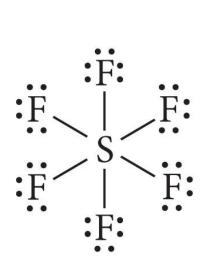
- The structure around a given atom is determined (*mostly*) by minimizing electron pair repulsions.
- They try to maximize the distance between electrons

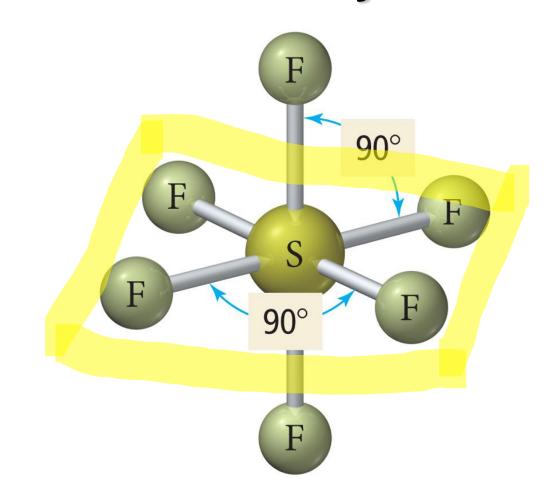

Linear Geometry



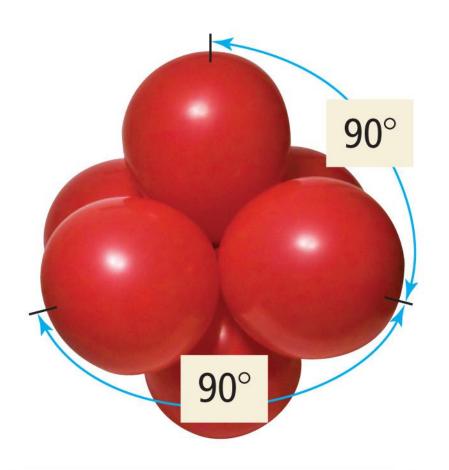
(a) Linear geometry


Trigonal Planar Geometry


Tetrahedral Geometry



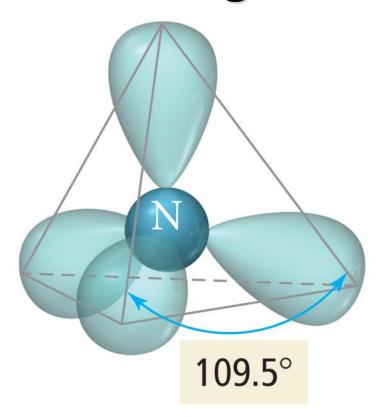
Trigonal Bipyramidal

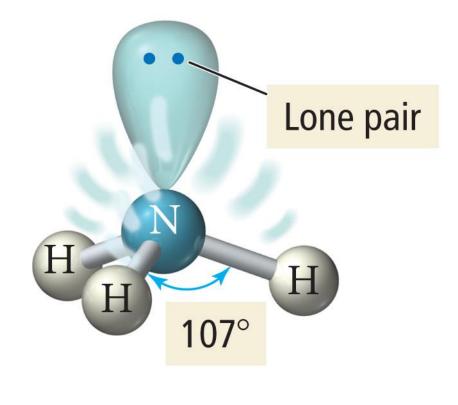

Octahedral Geometry

Octahedral geometry

Octahedral Geometry

Octahedral geometry

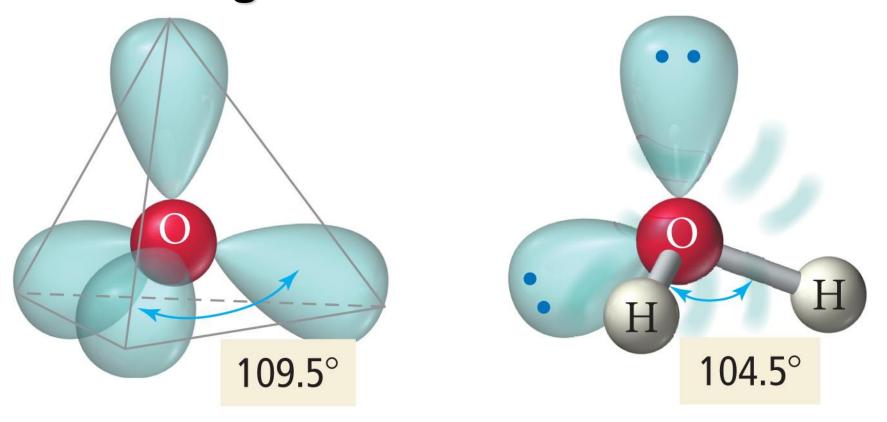

Octahedron


The Effect of Lone Pairs

- Lone pair = "occupy more space"
- This affects the bond angles, making the bonding pair angles smaller than expected.
- Pushes the atoms out of the way
- Relative sizes of repulsive force interactions is as follows:

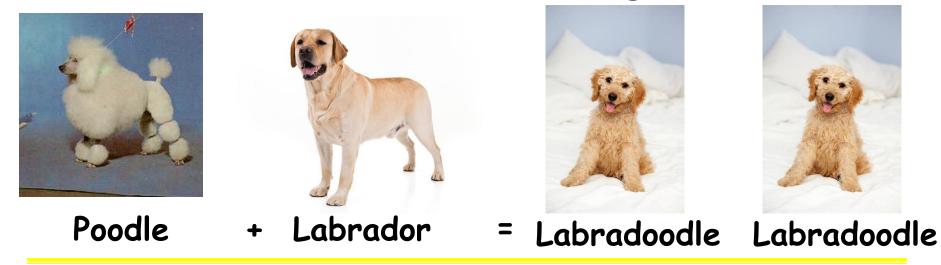
Lowest: Bonding Pair – Bonding Pair Medium: Lone Pair – Bonding Pair – Highest: Lone Pair – Lone Pair

Bond Angle Distortion from Lone Pairs

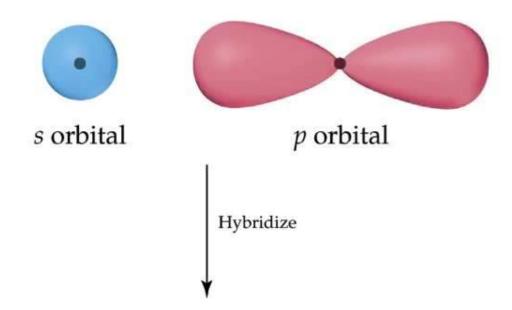


Ideal tetrahedral geometry

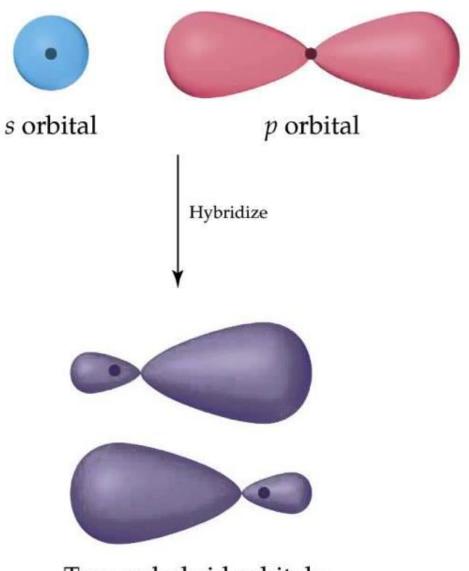
Actual molecular geometry


Bond Angle Distortion from Lone Pairs

Ideal tetrahedral geometry

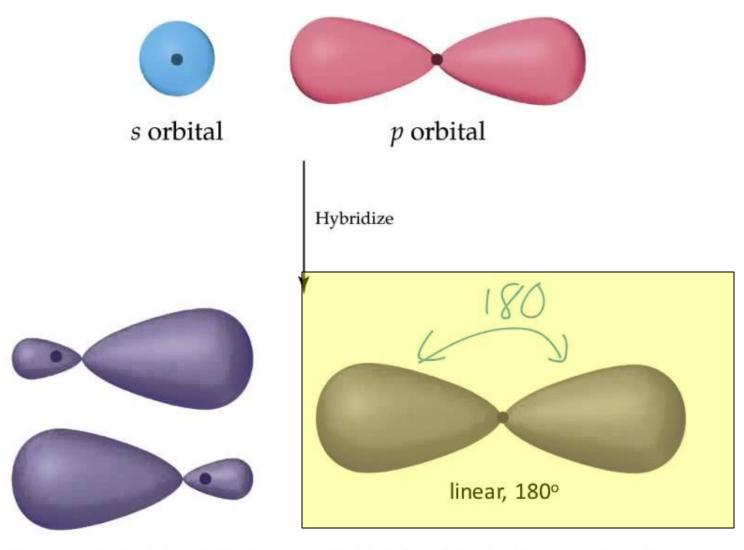

Actual molecular geometry

Hybridization - The Blending of Orbitals



Hybridization is the combining of two or more orbitals of nearly equal energy within the same atom into orbitals of equal energy.

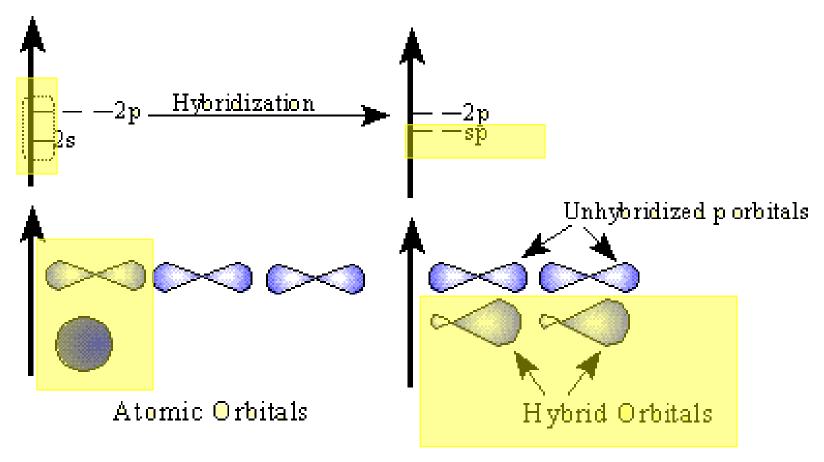
sp Hybridization



sp Hybridization

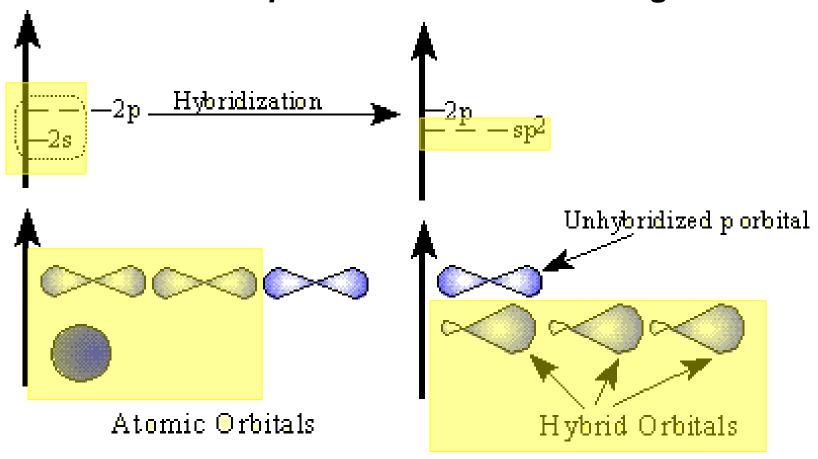
Two sp hybrid orbitals

sp Hybridization

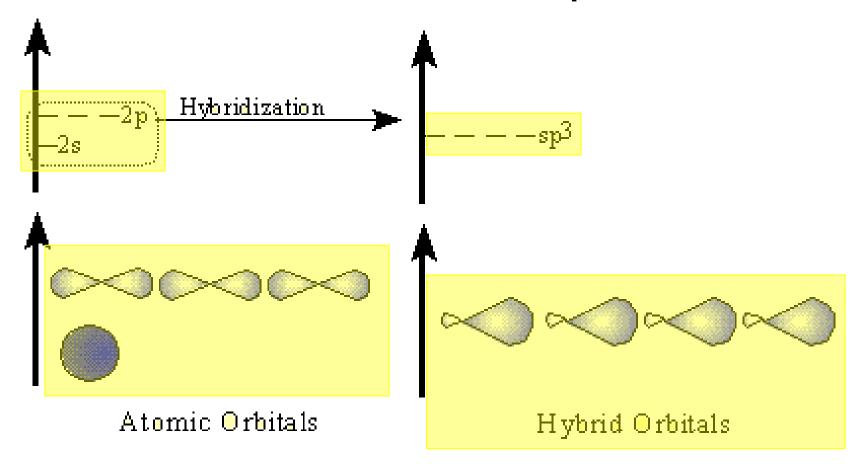


Two *sp* hybrid orbitals

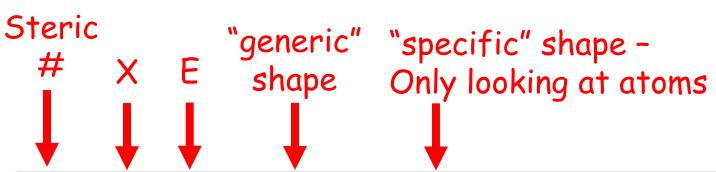
sp hybrid orbitals shown together (large lobes only)


sp Hybrid Orbitals

One s orbital combines with one p orbital Two p orbitals are left the same


sp² Hybrid Orbitals

One s orbital combines with two p orbitals One p orbital remains unchanged.


sp³ Hybrid Orbitals

One s orbital combines with three p orbitals

VSEPR – AXE Method

- The A represents the central atom.
- The X represents how many bonded atoms.
- The E represents the number of lone electron pairs present on the <u>central atom</u>.
- The sum of X and E, sometimes known as the steric number.

			<u> </u>					
Electron Groups	Bonding Groups	Lone Pairs	Electron Geometry (Hybridization)	Molecular Geometry (VSEPR class)	Approximate Bond Angles	Geometry Examples		
2	2	0	Linear (sp)	Linear (AX ₂)	180			
	3	0	Trigonal Planar	Trigonal Planar (AX ₃)	120			
3	2	1	(sp²)	Bent (AX₂E)				
	4	0	Tetrahedral (sp³)		Т	Tetrahedral (AX₄)		
4	3	1		Trigonal Pyramidal (AX 3 E)	109.5			
	2	2		Bent (AX ₂ E ₂)				

Electron	Bonding	Lone	Electron Geometry	Molecular Geometry	Approximate	Geometry
Groups	Groups	Pairs	(Hybridization)	(VSEPR class)	Bond Angles	Examples
	5	0	Trigonal Bipyramidal	Trigonal Bipyramidal (AX ₅)	120 (in plane) 90 (above and below)	→ {S
5	4	1		Seesaw (AX ₄ E)		
	3	2	(sp³d)	T-Shaped (AX ₃ E ₂)		
	2	3	-	Linear (AX ₂ E ₃)	180	
	6	0		Octahedral (AX ₆)		
	5	1		Square Pyrimidal (AX ₅ E)		
6	4	2	Octahedral (sp³d²)	Square Planar (AX ₄ E ₂)	90	
	3	3		T-Shaped (AX ₃ E ₃)		
	2	4		Linear (AX ₂ E ₄)		

		VS	EPR Geometries	9 Y	
Steric No.	Basic Geometry 0 lone pair	1 lone pair	2 Ione pairs	3 Ione pairs	4 Ione pairs
2	X E X				
3	X 120° X Trigonal Planar	E X < 120° Bent or Angular			
4	XIIIIIII E 109° X	XIIIIE X < 109° Trigonal Pyramid	X X X X S 109° Bent or Angular		
5	X X 120° X X X X Trigonal Bipyramid	< 90° X X X 120° E X Sawhorse or Seesaw	X Mun. E X X T-shape	X 180° X Linear	
6	X _{IIII} , X 90° X 90° X X X Octahedral	Square Pyramid	90° X E MIN X X X	X X X X < 90° T-shape	X 180° Illum, E mult

Great Hybridization Video:

https://m.youtube.com/watch?feature=youtu.be&v=vHXViZTxLXo

Online 3D Shape Simulation:

https://phet.colorado.edu/sims/html/molecule-shapes/latest/molecule-shapes_en.html

Link to YouTube Presentation

https://youtu.be/zvTSm6kT7C0